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Abstract. We consider high-temperature expansions for the free energy of zero-field Ising models
on planar quasiperiodic graphs. For the Penrose and the octagonal Ammann–Beenker tiling, we
compute the expansion coefficients up to 18th order. As a by-product, we obtain exact vertex-
averaged numbers of self-avoiding polygons on these quasiperiodic graphs. In addition, we analyse
periodic approximants by computing the partition function via the Kac–Ward determinant. It turns
out that the series expansions alone do not yield reliable estimates of the critical exponents. This is
due to the limitation on the order of the series caused by the number of graphs that have to be taken
into account, and, more seriously, to rather strong fluctuations in the behaviour of the coefficients.
Nevertheless, our results are compatible with the commonly accepted conjecture that the models
under consideration belong to the same universality class as those on periodic two-dimensional
lattices.

1. Introduction

Since the discovery of quasicrystals in the early 1980s [1–4] considerable attention has been
paid to the magnetic properties of these materials. While many quasicrystals contain atoms
(such as Fe, Mn or rare-earth elements) that carry local magnetic moments, these are usually
screened very effectively and consequently one finds a weak paramagnetic or diamagnetic
behaviour, see e.g. [5, 6]. Recently, however, there has been ample experimental evidence
for magnetic ordering in quasicrystals, including ferrimagnetic [7], ferromagnetic [8], anti-
ferromagnetic [9], and spin-glass behaviour [10–13], though some results are still discussed
controversially, see e.g. [14, 15], in particular with regard to the importance of crystalline
phases present in the samples.

Even before magnetic ordering in quasicrystals had been observed experimentally,
theoretical investigations on the influence of quasiperiodic order on magnetic properties
commenced. In most cases, the models considered were either one-dimensional quantum
spin chains with aperiodic sequences of coupling constants or classical Ising models on two-
dimensional quasiperiodic graphs; we refer the reader to the recent review [16] for a rather
complete list of references. Recently, a symmetry classification scheme for magnetically
ordered quasicrystals has been proposed [17].

In this context, it is one of the central questions whether quasiperiodic order influences the
universal properties at the phase transition, such as the critical exponents, in comparison with
the periodic case. There is a heuristic criterion due to Luck [18] on the relevance of aperiodicity,
extending an old result of Harris [19] for random defects, see also [20] for a closer examination
of the underlying scaling arguments. According to this criterion, the ‘topological disorder’
encountered in two-dimensional quasicrystals, generated by the cut-and-project method, is
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irrelevant; and hence an Ising model on a quasiperiodic tiling should belong to the same
universality class as the Ising model on the square lattice. Clearly, non-universal properties
do, in general, depend on the particular system under consideration. For instance, the location
of critical points of lattice models depends in a systematic way on the structure of the graph
on which the model is defined, see [21] and references therein.

In this paper, we consider high-temperature expansions of the free energy for zero-field
Ising models on two planar quasiperiodic graphs, the decagonal Penrose [22, 23] and the
octagonal Ammann–Beenker [24–26] tiling. The technique of high-temperature expansions is
well known, see e.g. [27]; it was developed several decades ago and has since been applied to a
variety of periodic lattices in both two and three dimensions. With regard to previous work on
high-temperature expansions of quasiperiodic Ising models, we are only aware of two articles
by Abe and Dotera [28,29] who compute the expansion of the free energy up to the eighth order
for the Penrose tiling and its dual, and of a few numerically calculated expansion coefficients
for the susceptibility for the Penrose case [30]. Employing a systematic procedure, we are able
to compute the exact values of the coefficients up to the 18th order for both the Penrose and
the Ammann–Beenker tiling. This requires much more effort than the calculation for periodic
lattices, because the number of graphs that one has to take into account grows tremendously
with the order. Although our expansions are still not yet sufficient to extract good estimates for
the critical temperatures or the critical exponents, we can show that our results are consistent
with those obtained by different methods.

From the high-temperature expansion of the free energy, one can compute the correlation
critical exponentν. In order to check universality, one would have to consider two independent
critical exponents. In principle, we could compute a magnetic exponent by using the high-
temperature series for the magnetic susceptibility by similar means. However, more general
graphs have to be considered in that case, and the number of graphs that one has to take into
account is again much larger than the number of those that contribute to the series expansion
of the free energy. This means that, with a comparable effort, it would not be possible to
obtain the susceptibility series even to 18th order. Therefore, and in view of the rather limited
predictive power that our 18th order high-temperature series for the free energy proves, we
restrict ourselves to the simpler case and exclusively treat the series expansion for the free
energy.

Presently, the most accurate data on the transition temperature and the critical exponents
stem from Monte Carlo simulations [31–34]. Besides graphical expansions and Monte Carlo
simulations, further methods have been employed to gain information about the critical
behaviour of quasiperiodic Ising models. First of all, exactly solvable cases can be constructed
as, for instance, the Ising model on the so-called labyrinth tiling [35], see also [16, 36] for
further examples. These models correspond to particular choices of coupling constants,
restricted by the requirement of integrability, and thus might not be representative for the
general situation. For the solvable models based on the idea of ‘Z-invariance’, see [16] and
references therein, the critical behaviour necessarily is the same as for the periodic case, but
one does not get a clue whether this extends to the general case, or whether it is at least the
generic situation. Second, there is an interesting approach using Lee–Yang zeros [37], which
are complex roots of the partition function in certain variables. Simon and Baake [38, 39]
calculated the zeros of the partition function for a large patch of the Ammann–Beenker tiling
numerically and drew conclusions about the critical temperature and the critical exponents.
Furthermore, renormalization group techniques were applied to study the Ising model on
two-dimensional quasiperiodic tilings [40]. In that case, one exploits the self-similarity of
quasiperiodic tilings, which translates into a renormalization procedure that, however, can
only be treated approximately in general. We note that for one-dimensional quantum Ising
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chains with aperiodically modulated coupling constants, corresponding to two-dimensional
layered Ising models, renormalization techniques may yield exact results for the critical
behaviour [41, 42]. In this case, the modulation is one-dimensional, and in accordance with
Luck’s criterion [18] one finds that the critical behaviour depends on the fluctuations of the
aperiodic sequence of coupling constants.

So far, all results appear to be in accordance with Luck’s criterion, including a recent
Monte Carlo study of the three-state Potts model on the Ammann–Beenker tiling [43]. Still,
most approaches are based on numerical or approximative treatments. It is our aim to obtain the
exact values of the coefficients for the high-temperature expansions. However, we should note
that it is, of course, not possible to reconstruct the singular part of the free energy from a finite-
degree polynomial comprising the first terms of a high-temperature series, and that conclusions
on the critical behaviour of the model drawn from this approach involve extrapolations and
cannot therefore be exact.

The paper is organized as follows. In the subsequent section, we briefly recall the graphical
high-temperature expansion of Ising models. In section 3, we discuss the generation of
subgraphs of quasiperiodic tilings and the computation of their occurrence frequencies. Then,
in section 4, we present our results for the coefficients of the high-temperature expansions
for the Penrose and the Ammann–Beenker tiling. The corresponding implications for the
critical behaviour are discussed in section 5. In section 6, we compare our results with exact
calculations of the partition functions of periodic approximants. Finally, in section 7, we
present our conclusions.

2. High-temperature expansion

We now give a brief account of the high-temperature expansion for the free energy of an Ising
model on a graph without an external field [27]. Let us consider a finite graphG containing
N sites (vertices) withM pairs of neighbouring vertices connected by bonds. We emphasize
that, throughout this paper, the notion of neighbouring vertices refers to vertices connected by
a bond, and not to the geometric distance between the vertices. For instance, in the Penrose
tiling discussed below, the short diagonal of the small rhombus corresponds to the smallest
distance between vertices, but does not constitute a bond. At a vertexj , we place an Ising spin
σj ∈ {±1}; and two spinsσj andσk located at neighbouring verticesj andk interact with a
coupling constantJ which we assume to be independent of the position. Hence the energy of
a spin configurationσ = {σ1, σ2, . . . , σN } onG is given by

E(σ) = −J
∑
〈j,k〉

σjσk (2.1)

where we sum over all pairs〈j, k〉 of neighbouring vertices connected by bonds as mentioned
above. The logarithm of the partition function

Z(G) =
∑
σ

exp[−βE(σ)]

= [cosh(βJ )]M
∑
σ

∏
〈j,k〉

[1 + σjσk tanh(βJ )] (2.2)

is, apart from a factor−1/β, the free energy. It can be expanded as

lnZ(G) = N ln 2 +M ln [cosh(βJ )] + N
∞∑
n=1

gnw
n (2.3)

whereβ = 1/kBT with Boltzmann’s constantkB and temperatureT . The expansion variable

w = tanh(βJ ) (2.4)
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is small for high temperature, hence the notion high-temperature expansion. The expansion
coefficientsgn are related to the number of subgraphs ofG containingn bonds.

The terms in the expansion (2.3) can be rearranged in a different fashion which is more
convenient for our needs (see p 382 in [27])

ln Z̃(G) = lnZ(G)−N ln 2−M ln [cosh(βJ )]

= N
∞∑
n=1

gnw
n =

∑
r

(cr;G)kr(w) (2.5)

where we now sum over allconnectedsubgraphscr of G. The quantity(cr;G) denotes the
so-calledlattice constantof cr in G, counting the number of wayscr can be embedded inG.
The weight functionskr(w) depend only oncr , not onG. In our case, without external field,
we can restrict the sum to so-calledstar graphs. These are graphs that cannot be dissected into
two disjoint subgraphs by eliminating a single vertex.

The weight functionskr(w) in equation (2.5) can be calculated from the partition function
Z̃(cr) of the subgraphcr . For this aim, let us generate all star subgraphs and arrange them in
a sequence{cr}r=1,2,... such thatcs cannot be embedded incr for r < s. In other words, the
lattice constant(cs; cr) may be non-zero only ifs 6 r, which, in general, does not determine
the sequence uniquely. Having arranged the subgraphs in such a way, the expansion (2.5) for
a subgraphcr gives

ln Z̃(cr) =
r∑
s=1

(cs; cr)ks(w) (2.6)

and, taking into account that(cr; cr) = 1, we obtain the corresponding weightkr(w)

kr(w) = ln Z̃(cr)−
r−1∑
s=1

(cs; cr)ks(w) (2.7)

expressed in terms of lattice constants(cs; cr) and weightsks(w) with s < r. Therefore, we
can successively compute the weightskr(w) provided we know the partition functioñZ(cr)
and the lattice constants(cs; cr) of all star graphscs that are subgraphs ofcr .

We note that we can rearrange the sum in equation (2.5) as

ln Z̃(G) =
∞∑
n=3

∑
r

∑
s

(c(n)r,s ;G)k(n)r,s (w) (2.8)

wherer labels closed loopsl(n)r consisting ofn bonds, andc(n)r,s are all possible complete
‘fillings’ of the loop l(n)r . By ‘fillings’ of a loop we mean all proper subgraphs ofG which have
the loop as their boundary. Here, the functionsk(n)r,s (w) have the form

k(n)r,s (w) = wn + O(wn+1). (2.9)

Hence, truncating the sum overn in equation (2.8) yields all terms in the expansion up tonth
order inw. The calculation of the weight functionsk(n)r,s (w) can be performed in analogy to
that of the weight functionskr(w) (2.7).

In summary, in order to calculate the high-temperature expansion (2.8) of the Ising model
to ordernmax we have to perform the following steps:

(i) generate all loopsl(n)r in the graphG consisting ofn 6 nmax bonds;
(ii) construct all fillingsc(n)r,s of l(n)r ;

(iii) calculate lnZ̃(c(n)r,s ), the logarithm of the partition function for the subgraphsc(n)r,s ;

(iv) calculate the lattice constants(c(n)r,s ;G) and(c(n
′)

r ′,s ′ ; c(n)r,s );
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(v) compute the weight functionsk(n)r,s (w) by successive use of the analogue of (2.7);
(vi) calculate the expansion (2.8).

We are now in the position to apply this scheme to the case of quasiperiodic graphs.

3. Frequencies of subgraphs of quasiperiodic tilings

In fact, we want to obtain the expansion (2.5) for the Ising model on an infinite quasiperiodic
graphG. Therefore, we have to compute the corresponding ‘averaged lattice constants’ per
vertex

〈cr;G〉 := lim
N→∞

1

N
(cr;GN) (3.1)

whereGN denotes finite patches withN vertices approaching the infinite graphG. In other
words, we need to calculate the occurrence frequency of a subgraphcr in the infinite graphG.
The main challenge now is to compute these quantities for a given quasiperiodic graph and all
of its subgraphs up to a certain size.

For quasiperiodic graphs generated by the cut-and-project method [44] the frequencies
of subgraphs can be computed exactly. In the cut-and-project method, one starts from a
higher-dimensional periodic lattice, and projects a certain part of it onto a lower-dimensional
‘physical’ or ‘parallel’ spaceE‖. For the two cases of interest, the Penrose and the octagonal
Ammann–Beenker tiling, the lattices have to be at least four-dimensional, the minimal choice
being the root latticeA4 for the Penrose case [45] and the hypercubic latticeZ4 for the octagonal
case [25]. The root latticeA4 can be considered as a sublattice ofZ5, wherefore the latter,
albeit not minimal, is frequently used to generate the Penrose tiling. The physical spaceE‖
is determined as an invariant subspace with respect to the relevant subgroup (in our examples
the dihedral groupsD5 andD8, respectively) of the point group of the periodic lattice. Its
orthogonal complement, the perpendicular spaceE⊥, is then also an invariant subspace of
this symmetry. The quasiperiodic tiling is now obtained by projecting all those lattice points
ontoE‖ whose projection ontoE⊥ falls into a certain set called the ‘window’ or ‘acceptance
domain’A. In the minimal case, this acceptance domain has the same dimension asE⊥;
however, if we project the Penrose tiling from the hypercubic latticeZ5, the perpendicular
space is three-dimensional and the acceptance domain consists of four regular pentagonsPm
(m = 1, 2, 3, 4) situated on equidistant, parallel planes, and two isolated points (P0 andP5),
see figure 1. For the Ammann–Beenker tiling, the situation is simpler; the acceptance domain,
which is obtained as the projection of the four-dimensional hypercube toE⊥, is a regular
octagonO.

Now, considering an arbitrary motivec consisting of a collection ofp pointsc = {r(i)‖ ; 16
i 6 p} in physical space, we can compute its occurrence frequency, i.e., how often translated
copies of the point set occur in the infinite tiling. Associated to the setc of points in physical
space is a corresponding acceptance domainA(c) ⊂ A in perpendicular space, obtained by
intersectingp copies of the acceptance domainA shifted appropriately with respect to each
other. This corresponds to the acceptance domain filled by choosing a reference point of the
motive c, and, for all occurrences of the motive in an infinite tiling, lifting the positions of
this reference point to the higher-dimensional lattice and projecting toE⊥. Hence, the area of
A(c), divided by the area ofA, is the occurrence frequency of our motive, as follows from the
uniform distribution on the acceptance domain, see [46] and references therein.

In the Penrose case, the acceptance domainA(c) consists of four piecesAm(c) ⊂ Pm
(m = 1, 2, 3, 4) which have to be taken into account. They are given by

Am({r(i)‖ }) =
⋂
i

{Pm+t (i) − r(i)⊥ } (3.2)
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Figure 1. The acceptance domain of the Penrose tiling, consisting of four regular pentagonsP1,
P2, P3, P4, and two isolated pointsP0, P5, situated on equidistant parallel planes in the three-
dimensional spaceE⊥. The polytope spanned by the lines is the projection of the five-dimensional
hypercube toE⊥.

Figure 2. The ‘fattest’ loop of length eight in the Penrose lattice and its acceptance domain
(black polygons) with respect to the reference point marked by the circle (◦). The area fraction is
τ − 8

5 ' 0.0180 whereτ = (1 +
√

5)/2 is the golden ratio. The symmetry factors readR = 5 and
S = 1, thus the occurrence frequency of this loop in the Penrose tiling, in an arbitrary orientation,
is 5τ − 8' 0.0902.

wherePm = ∅ if m 6∈ {0, 1, 2, 3, 4, 5}. The coordinatesr(i)‖ ∈ E‖ andr(i)⊥ ∈ E⊥ have the form

r
(i)
‖ =

4∑
j=0

n
(i)
j

(
cos2πj

5

sin 2πj
5

)
r
(i)
⊥ =

4∑
j=0

n
(i)
j

 1
cos4πj

5

sin 4πj
5

 (3.3)

with integer coefficientsn(i)j which correspond to the coordinates of the lattice point inZ5 that

projects tor(i)‖ . The first component ofr(i)⊥ ,

t (i) =
4∑
j=0

n
(i)
j (3.4)

denotes the so-called translation class of the pointr
(i)
‖ , which just labels the part of the

acceptance domainPt(i) where the corresponding perpendicular projection lies. In figures 2
and 3, we show two examples where the motives are the ‘fattest’ loops, in terms of the enclosed
area, of length 8 and 10 in the Penrose tiling that contribute to the high-temperature expansion.

For the eightfold Ammann–Beenker case there is only one acceptance domainO, hence

A({r(i)‖ }) =
⋂
i

{O − r(i)⊥ } (3.5)
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Figure 3. As figure 2, now for the ‘fattest’ loop of length ten. Here, the area fraction is
(14τ − 22)/5' 0.1305, and the symmetry factors readR = S = 1.

where the projections toE‖ andE⊥ are given by

r
(i)
‖ =

3∑
j=0

n
(i)
j

(
cosπj4
sin πj

4

)
r
(i)
⊥ =

3∑
j=0

n
(i)
j

(
cos3πj

4

sin 3πj
4

)
. (3.6)

Here,n(i)j ∈ Z denote the coordinates of the lattice point inZ4 that projects tor(i)‖ .
The acceptance domains of a motivec are intersections of convex polygons and hence

themselves polygonal, see figures 2 and 3. It is readily seen that the coordinates of the vertices
of the acceptance domains belong to certain extensions of the field of rational numbersQ. For
the Penrose tiling, one has to perform the calculation in the field

Q(τ,
√

2 + τ) =
{
a + b
√

2 + τ + cτ + dτ
√

2 + τ
∣∣∣a, b, c, d ∈ Q} (3.7)

whereτ = (1 +
√

5)/2 is the golden ratio, satisfying the quadratic equationτ 2 = τ + 1. For
the Ammann–Beenker case, the corresponding number field is

Q(λ) = {a + bλ|a, b ∈ Q} (3.8)

whereλ = 1 +
√

2 is the ‘silver mean’ that is a solution of the quadratic equationλ2 = 2λ+ 1.
Therefore, in order to compute the occurrence frequency of a given motivec in the tiling G,
we have to determine the area of the acceptance domain carrying out the calculation in the
appropriate number field. The averaged lattice constant〈c ;G〉 is the occurrence frequency
of c summed over all possible orientations of the motive. In these quasiperiodic tilings, the
frequencies of motives are independent of their orientation, hence we do not need to calculate
them separately, but just have to count how many orientations of the motive occur in the tiling.

Let us focus on the Penrose tiling as an example. Rotating the motivec by an angle
πk/5 (k ∈ Z) essentially corresponds to a rotation of the acceptance domain by 2πk/5.
Furthermore, the mirror imagēc of the motivec also occurs with the same frequency, since
the corresponding acceptance domainsAm(c̄) are just−A5−m(c). Therefore, in our expansion
(2.5), it is advantageous to jointly consider graphs which are mirror images of each other
because they give the same contribution. For this reason, we assign two symmetry factors
R ∈ {1, 2, 5, 10} andS ∈ {1, 2} to each of these graphs,R counting the number of rotations
by anglesπk/5 which do not map the graph onto itself, andS = 2 if reflection does not map
the graph onto itself or onto a rotated copy of itself, compare figures 2 and 3. The averaged
lattice constant〈c;G〉, as defined above, is thusR times the area fraction obtained for a fixed
orientation of the graphc. Multiplying 〈c;G〉 by the factorS, we can restrict the sum in
equation (2.5) to graphs that are non-equivalent under reflection.

Eventually, we have to consider all star subgraphs of the quasiperiodic tiling,
corresponding to all possible fillings of loops. In contrast to the case of simple planar (periodic)
lattices, a loop in the quasiperiodic tilings can have several fillings, which may occur with
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Figure 4. A loop of length ten in the Ammann–Beenker tiling that can be filled in three different
ways. The corresponding occurrence frequencies of the filled patches, obtained from the area
fraction of the acceptance domains shown on the right, are given below the patches. They add up
to 4−13λ/8' 0.0769 which is the frequency of the (empty) loop in the Ammann–Beenker tiling.
The encircled node denotes the reference point.

Figure 5. As figure 4, for another, reflection-symmetric loop of length ten which can be filled in
five ways obtaining three reflection-symmetric patches and one pair of patches that map onto each
other under reflection. Here, the frequency of the (empty) loop is 1− 3λ/8' 0.0947.

different frequencies. In figures 4 and 5, the possible fillings, together with the corresponding
frequencies, of two exemplary loops in the Ammann–Beenker tiling are shown. In orthogonal
space, the different fillings correspond to a dissection of the acceptance domain of the loop
into non-overlapping parts, see figures 4 and 5.

In order to avoid confusion, we would like to point out once more how our frequencies are
normalized, i.e., what the numbers given in figures 4 and 5 really mean. We emphasize that
the frequency we compute isnot the frequency of a particular loop of lengthn among all loops
of the same length. Instead, it gives the probability that a randomly chosen vertex belongs to
the particular loop, in an arbitrary orientation.

4. Expansion coefficients for the Penrose and the Ammann–Beenker tiling

The Penrose and the Ammann–Beenker tiling are both bipartite graphs, which means that all
closed loops have an even number of edges, and at least four. Therefore, for zero magnetic
field, only even powers ofw occur in the expansion (2.5) that takes the form

F(w) = lim
N→∞

1

N
ln Z̃(GN) =

∞∑
n=2

g2nw
2n (4.1)

whereGN denotes a finite patch of the quasiperiodic graphG containingN vertices, andF(w) is,
apart from a factor−1/β, the free energy per vertex. We calculated the expansion coefficients
g2n up to 18th order inw for both the Penrose and the Ammann–Beenker tiling. The results
are presented in table 1.

As a by-product, we obtain information on another interesting model, namely the problem
of self-avoiding polygons, or closed self-avoiding walks, on the quasiperiodic tiling. Self-
avoiding walks and polygons have been studied extensively as simple lattice models of
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Table 1. The expansion coefficientsg2n of the free energy of the zero-field Ising model on
the Penrose and the Ammann–Beenker tiling. The values for the square lattice are included for
comparison.

2n Penrose tiling Ammann–Beenker tiling Square lattice

4 1= 1.00 1= 1.00 1
6 9− 4τ ' 2.53 λ ' 2.41 2
8 121

2 − 4τ ' 6.03 471
2 − 17λ ' 6.46 41

2
10 2513

5 − 1441
5τ ' 18.28 138− 50λ ' 17.29 12

12 7315
6 − 416τ ' 58.73 8031

3 − 3101
2λ ' 53.72 371

3
14 1784− 969τ ' 216.13 −1220 + 586λ ' 194.73 130
16 −27 8213

4 + 17 750τ ' 898.35 963
4 + 2951

2λ ' 810.15 4901
4

18 −124 027 + 79 07823τ ' 3924.97 −108 706 + 46 56613λ ' 3715.07 19582
3

Table 2. The mean number (per vertex) of self-avoiding 2n-step polygonsS2n on the Penrose and
the Ammann–Beenker tiling, and on the square lattice.

2n Penrose tiling Ammann–Beenker tiling Square lattice

4 1= 1.00 1= 1.00 1
6 9− 4τ ' 2.53 λ ' 2.41 2
8 15− 4τ ' 8.53 50− 17λ ' 8.96 7

10 3093
5 − 1681

5τ ' 37.45 142− 44λ ' 35.77 28
12 1066− 552τ ' 172.85 1173− 416λ ' 168.69 124
14 6400− 3405τ ' 890.59 1704− 353λ ' 851.78 588
16 5093− 170τ ' 4817.93 27 175− 9356λ ' 4587.62 2 938
18 75 115− 29 655τ ' 27 132.20 5992 + 8178λ ' 25 735.44 15 268

polymers or planar vesicles, see for instance [47–49]. Most investigations in the literature
restrict to periodic lattices [47], only few results are known for hierarchical [48] and
quasiperiodic [50] graphs. It is probably hard to justify why a quasiperiodic discretization
should be of physical interest; however, one would expect that the physical properties will be
very similar as those for periodic planar lattices, and that critical point properties are universal.
From a mathematical point of view, the problem is interesting in the sense that one now
has to average over all possible local configurations, and consequently the coefficients of the
corresponding generating functions take values in certain quadratic number fields.

The quantities of interest are the sumsS2n of the occurrence frequencies of all order-2n

loops which are presented in table 2. Here,S2n is nothing but the mean number per vertex of
closed self-avoiding walks with 2n steps, i.e., random walks with 2n steps that never return to
a vertex visited before, except for the end point which equals their starting point. For regular
and recently also for ‘semi-regular’ lattices, there exist data for rather large values ofn in
the literature [49]; the square lattice numbers are series M1780 in [51]. A related problem,
the enumeration of self-avoiding walks on quasiperiodic tilings, was already investigated by
Briggs [50]. However, his results are based on counting walks emanating from a fixed starting
point, whereas we compute the exact average over all possible starting points for the self-
avoiding polygons. Note that the number of walks does depend on the initial vertex; however,
the asymptotic behaviour should be independent of this choice.

The coefficientsg2n andS2n listed in tables 1 and 2 belong to degree-two extensions of the
field of rational numbers, namelyQ(τ ) for the Penrose andQ(λ) for the Ammann–Beenker
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Table 3. The number of symmetry-inequivalent closed loops of order 2n contributing to the high-
temperature expansion and the number of patches obtained by filling the loops.

Penrose Ammann–Beenker
Square lattice

2n empty filled empty filled empty/filled

4 2 2 2 2 1
6 6 6 4 4 1
8 24 28 17 20 3

10 143 174 77 112 6
12 839 1 034 479 743 25
14 5 634 6 957 3 007 4 981 86
16 37 677 46 712 20 175 35 063 414
18 255 658 317 028 139 146 244 638 1975

tiling, respectively. We note that for the Penrose case the frequencies of subgraphs, and thus
the coefficientsg2n andS2n, belong to the fieldQ(τ ), whereas the areas of their acceptance
domains in general are elements ofQ(τ,

√
2 + τ).

The limitation of our calculations was caused by a strong, exponential growth of the
number of graphs which have to be taken into account. For the Penrose tiling, we have—even
after identifying graphs that are equivalent by rotation or reflection—to deal with more than
300 000 different graphs contributing to the 18th order, see table 3, and their quantity grows
approximately by a factor between six and seven when increasing the order by two. The
corresponding numbers of graphs for the square lattice, included in table 3, are much smaller;
the sequence of these numbers is apparently not contained in [51]. We generated the order-2n

loops as boundaries of patches that are constructed iteratively by successively attaching rhombi
to their surface, terminating the process when attaching further rhombi does not lead to new
order-2n loops. By this procedure, we make sure that all graphs are found. However, we
have to pay the price that topologically identical graphs are obtained repeatedly and have to
be rejected, thus slowing down the procedure substantially.

5. Critical behaviour

In many cases, high-temperature expansions yield good estimates of the critical temperature
and the critical exponent of the free energy. The simplest approach, which is commonly used
for this purpose, uses the ratio of two successive coefficientsg2n/g2n−2 in the expansion [27].
Assuming that the free energyF(w) behaves in the vicinity of the critical pointwc as

F(w) ∼ (1− w2/w2
c )
κ (5.1)

one can easily see from (4.1) that

g2n

g2n−2
= 1

w2
c

(
1− κ + 1

n

)
+ O(n−2). (5.2)

In other words, for sufficiently large values ofn, the ratiosg2n/g2n−2 should lie on a straight
line when plotted as a function ofn−1. The slope of this line and its displacement from the
origin determine the critical pointwc and the exponentκ. Here,κ is related to the usual
correlation exponentν by κ = νd, whered = 2 is the spatial dimension.

We may estimate the critical temperature from the sequence

%(2n) =
[
n
g2n

g2n−2
− (n− 1)

g2n−2

g2n−4

]−1

(5.3)
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Table 4. Estimates of the critical point of the Ising model on the Penrose tiling and the Ammann–
Beenker tiling, and on the square lattice.

%(2n)

Penrose Ammann–Beenker Square
2n tiling tiling lattice

8 0.5116 0.2892 0.3333
10 0.1778 0.3725 0.2308
12 0.2430 0.1902 0.1875
14 0.1543 0.1486 0.1752
16 0.1334 0.1264 0.1726
18 0.1648 0.1252 0.1728

w2
c 0.1563(5)a 0.1566(5)c 0.1716d

0.1552(6)b

a After [31].
b After [33].
c After [34].
d This corresponds to the exact valuewc =

√
2− 1 [52,53].

that approachesw2
c in the limit n→∞. In table 4, we show the results for%(2n) for the two

quasiperiodic tilings under consideration and compare these with the estimates of the critical
point from Monte Carlo simulations [31, 33, 34]. The corresponding values for the square
lattice are included for comparison.

As one can see, the convergence of%(2n) is rather poor for the quasiperiodic tilings. In
general, the rate of convergence is determined by additional singularitiesw′c ∈ C of F(w)
lying close towc in the complex plane. These give a correction tog2n/g2n−2 which behaves
like O[(w′c/wc)

2n] [27]. The influence of these corrections must be substantial in our case
rendering the method rather inapplicable for us. We will come back to this point in section 6
below when we discuss the corresponding quantities for periodic approximants, compare also
figure 8 that contains a plot of the ratiosg2n/g2n−2 for the case of the Penrose tiling.

There is, however, another method which is more suitable for us to examine the critical
behaviour. Let us consider a sequence of partial sumsFm of the expansion (4.1) at the critical
pointwc

Fm =
m∑
n=2

g2nw
2n
c . (5.4)

If the functionF(w) behaves like (5.1), then the asymptotic behaviour of the coefficient
g̃2n = w2n

c g2n of its expansion in the variablew2/w2
c is given byg̃2n ∼ n−κ−1 for n → ∞

[54,55]. Therefore, for largem, we have

Fm = F∞ −
∞∑

n=m+1

g2nw
2n
c = F∞ −

∞∑
n=m+1

g̃2n

' F∞ − b̃
∞∑

n=m+1

n−(κ+1) ' F∞ − bm−κ (5.5)

whereb is a parameter and the last relation is obtained by approximating the sum by an integral.
Therefore, for sufficiently largem, the valuesFm should lie on a straight line when plotted
versusm−κ . In figure 6, we plot the partial sumsFm for the Penrose and the Ammann–Beenker
tiling, taking κ = 2ν = 2, andwc equal to the Monte Carlo estimates of [33, 34], see also
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Figure 6. The dependence of the partial sumsFm of equation (5.4) onm−2 for the Penrose tiling
(◦), the Ammann–Beenker tiling (♦), and the square lattice (�), respectively. The straight lines
are least-square fits to the data, disregarding the three points with smallestm values.

table 4. For comparison, we also included corresponding data for the square lattice where the
exact solution is known. Apparently, the data points lie close to a straight line for all three
cases, and the fluctuations in the data for the quasiperiodic tilings are not visibly larger than
those for the square lattice. Thus, we conclude that our data are compatible with the Onsager
universality class.

From equation (5.5), we may also try to derive estimates of the critical exponentsν = κ/2
by solving

Fm+2− Fm
Fm − Fm−2

= 1− ( m
m+2

)2νm(
m
m−2

)2νm − 1
(5.6)

for the value ofνm. Clearly, these are biased estimates since the critical temperatures have been
used as an input in (5.4). In table 5, we show the values ofνm obtained in this way. Not too
surprisingly, we also recover rather strong fluctuations in these data, and no clear convergence
is visible, at least for the quasiperiodic cases. Therefore, we estimate the value ofν by taking
the arithmetic mean of theνm. The error estimates are just the standard deviation which is
particularly large for the Ammann–Beenker tiling, and nowhere near the accuracy that has
been reached by Monte Carlo simulations [34]. However, this procedure should be taken with
a grain of salt, since theνm should eventually approach the correct value ofν for largem, and
we did not justify why taking a mean makes sense in this case. We have also tried to use Padé
approximants to extract information about the critical point and critical exponent, but this did
not improve the situation—apparently our series is just too short.

Concerning the numbers of self-avoiding polygonsS2n shown in table 2, one considers
their generating function

G(x) =
∞∑
n=2

S2nx
2n (5.7)

which has a critical pointxc that is characterized by a cusp-like singularity; i.e., in the vicinity
of xc one has

G(x) ∼ A(x) +B(x)(1− x2/x2
c )

2−α (5.8)

with a critical exponentα, andA(x) andB(x) are non-singular atx = xc. We note that the
only exact result for the related problem of self-avoiding walks in two dimensions is obtained
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Table 5. Estimatesνm (5.6) of the critical exponentν of the Ising model on the Penrose tiling and
the Ammann–Beenker tiling, and on the square lattice.

νm

Penrose Ammann–Beenker Square
m tiling tiling lattice

6 0.922 0.749 0.864
8 0.968 1.189 1.022

10 1.208 1.267 1.043
12 1.160 1.178 1.027
14 1.021 0.987 1.011
16 1.044 0.816 1.001

ν 1.05± 0.11 1.03± 0.21 0.99± 0.07

Figure 7. Ratios of the numbers of self-avoiding polygons (per vertex) on the Penrose tiling (◦),
the Ammann–Beenker tiling (♦), and the square lattice (�), respectively. Square lattice data for
2n 6 56 are taken from [56]. The straight lines are obtained from equation (5.8), in analogy to
equation (5.2), using the critical exponentα = 1

2 and the approximate values of the critical point
xc given in [50] and [49].

by the Coulomb gas approach [57] and gives a critical pointx2
c = 1/(2 +

√
2) and critical

exponentsα = 1
2, γ = 43

32 = 1.343 75 andν = 3
4 for the hexagonal lattice. Frequently, the

so-called connective constantµ = 1/xc is given instead ofxc. In [50], estimates of the critical
point xc for self-avoiding walks, which coincides with the value for self-avoiding polygons,
are given based on enumerations of walks of at most 20 and 16 steps for the Penrose and the
Ammann–Beenker tiling, respectively. The corresponding critical exponent in this case isγ ,
and all results support the conjecture that the self-avoiding walk problems on two-dimensional
lattices and quasiperiodic tilings belong to the same universality class.

In figure 7, we show the ratios of successive numbersS2n/S2n−2 as a function of 1/n,
which, by the same arguments that led to equation (5.2), should lie on a straight line for
largen. Clearly, this is true for the square lattice, whereas the data for the Penrose and the
Ammann–Beenker tiling still show sizable fluctuations. The straight lines in figure 7 are
the functions [1− 5/(2n)]/x2

c , compare (5.2), where we used the critical exponentα = 1
2

and the valueµ = 2.618 158 53 cited in [49] for the square lattice connective constant, and
the estimatesxc = 0.363 andxc = 0.361 [50] for the critical points on the Penrose and the
Ammann–Beenker tiling, respectively. Given the rather short sequence at our disposal, and the
uncertainty in the estimates [50], the agreement for the quasiperiodic cases is reasonable, thus
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supporting the conjecture that the critical point of self-avoiding polygons on such quasiperiodic
tilings is described by the same critical exponents as for the hexagonal lattice [57].

6. Partition functions of periodic approximants

One may pose the question whether one can calculate the expansion coefficientsg2n in
equation (4.1) by a different method, thus verifying our results. Perhaps it might even be
possible to calculate the partition functionZ(G) on certain quasiperiodic tilingsG exactly.
Although this may seem hopeless, there exist methods to tackle this problem, which at least
allow us to compute the partition function of general periodic lattices explicitly, thus also for
periodic approximants of the quasiperiodic tilings. Let us briefly recall some exact results on
partition functions on two-dimensional lattices.

The first solution of the two-dimensional zero-field Ising model for the square lattice had
been found by Onsager and Kaufman [53,58] in 1944. Several years later, Kac and Ward [59]
developed a combinatorial approach in which the problem was reduced to the calculation of a
determinant of a certain matrixK (see below) which depends on the lattice and the coupling
constants between the spins. Although this approach was not rigorous, it appeared extremely
plausible and it initiated numerous attempts to generalize this result to other lattices [60–63].
Recently, Dolbilinet al [64] proved the long-known formula

Z̃(G)2 = det(K) (6.1)

for a zero-field Ising model on an arbitrary planar graphG with arbitrary (in general site-
dependent) spin coupling constants. The matrix elementsK(ei , ej ) of the 2M × 2M matrix
K are labelled by oriented edgesei andej , 16 i, j 6 2M. They are defined as

K(ei , ej ) =


1 if ei = ej
−wi exp

[
i

2
(êi , ej )

]
if f (ei ) = b(ej ) and f (ej ) 6= b(ei )

0 otherwise

(6.2)

wherewi = tanh(βJi) and Ji is the spin coupling constant along the edgeei , which is
independent of the edge in our case,Ji ≡ J . Furthermore,(êi , ej ) denotes the angle between
edgesei andej , andb(ei ) andf (ei ) are the starting point and the end point of the edgeei ,
respectively. IfG is periodic, the matrixK is cyclic and the determinant can be calculated
exactly in the thermodynamic limitM →∞. We can therefore apply (6.2) and calculateZ̃(G)
exactly for periodic approximants of the Penrose and the Ammann–Beenker tiling.

Let us now briefly describe how to generate periodic approximants of quasiperiodic tilings
in the framework of the cut-and-project method discussed in section 3. The acceptance domain
A and the projection onto perpendicular spaceE⊥ are altered in a way that corresponds to
replacing the irrational numbersτ andλ by rational approximantsτm andλm. Here, for the
Penrose tiling we useτm = fm+1/fm wherefm+1 = fm + fm−1, andf0 = 0, f1 = 1 are the
Fibonacci numbers, and limm→∞ τm = τ . Analogously, one defines rational approximants
λm = gm+1/gm with the ‘octonacci numbers’gm+1 = 2gm + gm−1 andg0 = 0, g1 = 1, and
limm→∞ λm = λ for the case of the Ammann–Beenker tiling.

In this way, one obtains periodic approximants of the Penrose tiling with unit cells
containingN = 11, 29, 76, 199, 521, 1364, 3571, 9349 vertices form = 1, 2, 3, 4, 5, 6, 7, 8,
respectively. The unit cells of the periodic approximants of the Ammann–Beenker tiling with
m = 1, 2, 3, 4, 5 containN = 7, 41, 239, 1393, 8119 vertices. For both tilings, the number
of oriented edges is 2M = 4N , because each vertex has exactly four neighbours. We note
that the approximantm + 1 contains aboutτ 2 = τ + 1 ' 2.618 andλ2 = 2λ + 1 ' 5.828
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as many vertices and bonds as the approximantm for the Penrose and the Ammann–Beenker
case, respectively.

For each periodic approximant, we define a matrixK̃ labelled by oriented edgese′i and
e′j with starting point in the unit cell. It is related to the Kac–Ward matrixK (6.2) as

K̃(e′i , e
′
j ) := K(ei , ej ) exp(−ik111) exp(−ik212). (6.3)

Here, we can assume thate′i = ei starts in the unit cell, ande′j equalsej modulo the unit cell,
i.e., if b(ej ) = ξjV + ηjW , whereV andW are the base vectors spanning the unit cell, then
b(e′j ) = frac(ξj )V +frac(ηj )W where frac(x) denotes the fractional part ofx. The integers11

and12 are the integer partsbξjc andbηjc, respectively, and̃K depends on the ‘wavevectors’
k1 andk2 which are real numbers. Due to the fact that the Kac–Ward matrixK of the periodic
approximant is cyclic, its determinant can be expressed as a product of the determinant ofK̃

over all values ofk1 andk2, corresponding to a reduction to the unit cell. Calculating the
logarithm ofZ̃(G), and taking relation (6.1) into account, one obtains

ln Z̃(G) = 1

8π2

∫ 2π

0

∫ 2π

0
ln detK̃(k1, k2) dk1 dk2. (6.4)

Let us now expand this equation in a series with respect tow and compare it with the
high-temperature expansion (4.1). For this purpose, we exploit the fact (6.2) that the (finite-
dimensional) matrixK̃(k1, k2) has a formK̃(k1, k2) = 1 +wL̃(k1, k2) whereL̃(k1, k2) has
zero trace. Therefore, using

det [1 +wL̃(k1, k2)] = det exp ln [1 +wL̃(k1, k2)]

= exp tr ln [1 +wL̃(k1, k2)] (6.5)

one obtains, expanding the logarithm in powers ofwL̃(k1, k2),

ln detK̃(k1, k2) = tr ln [1 +wL̃(k1, k2)]

=
∞∑
p=1

(−1)p+1

p
tr[L̃p(k1, k2)]w

p (6.6)

where, again, only even values ofp yield non-vanishing contributions to the sum. Comparing
this result with equation (6.4), we derive an expression for the coefficientg2n in the expansion
(4.1)

g2n = − 1

16π2n

∫ 2π

0

∫ 2π

0
tr[L̃2n(k1, k2)] dk1 dk2 (6.7)

for the periodic approximants. We have calculated the coefficients from (6.7) for the leading
orders inw for both the Penrose and the Ammann–Beenker tiling. The limitation of the
calculation was due to a rapidly growing dimension of the complex matrixL̃(k1, k2), which
was equal to 37 396 and 32 476 for our largest approximants of the Penrose and Ammann–
Beenker tiling, respectively. The results are presented in tables 6 and 7. Clearly, with increasing
size of the approximant, the coefficients approach those of the quasiperiodic system, and the
coefficients of the largest approximant are already quite close to those of the quasiperiodic
case.

We now consider the ratios (5.2) for the periodic approximants of the Penrose tiling. The
result is shown in figure 8. Although we included terms up to order 2n = 56, the data for
the two periodic approximants do not lie on straight lines, in contrast to those of the square
lattice. Instead, they show large fluctuations, and apparently the fluctuations for the smallest
approximant with 11 vertices in the unit cell turn out to be much larger than those for the larger
approximant which contains 29 vertices. It would be interesting to have a better understanding
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Figure 8. The ratiosg2n/g2n−2 of expansion coefficients for the square lattice (�), the first (+)
and the second (×) periodic approximant of the Penrose tiling, and for the Penrose tiling (•),
respectively. Lines are meant as guides to the eye only.

of this phenomenon, perhaps an investigation of the complex-temperature phase diagram of the
periodic approximants can give an explanation of this observation. Again, figure 8 also shows
that the data for the second approximant are already rather close to that of the quasiperiodic
tiling, and one might conclude from figure 8 that the fluctuations in the ratios of expansion
coefficients become less with increasing size of the approximant.

7. Conclusions

We considered the Ising model on two planar quasiperiodic graphs, the Penrose and the
Ammann–Beenker tiling. We calculated the leading terms of the high-temperature expansion
of the free energy exactly, using the embedding of the quasiperiodic tilings into higher-
dimensional periodic lattices to compute the occurrence frequencies of patterns in the tiling.
These frequencies are expressed in terms of characteristic quadratic irrationalities related to
ten- and eightfold rotational symmetry, the golden meanτ = (1 +

√
5)/2 and the silver mean

λ = 1 +
√

2 for the Penrose and the Ammann–Beenker tiling, respectively.
The number of graphs that contribute to a given order in the expansion grows much faster

with the order than for a simple periodic lattice, therefore we did not go beyond the 18th order
in the expansion variablew = tanh(βJ ) in this work. From our expansion alone, it is difficult
to extract information about the critical behaviour. However, using estimates of the critical
temperature obtained by other methods to analyse our data, we find that our expansions are in
accordance with the conjecture that Ising models on such planar quasiperiodic graphs belong
to the Onsager universality class.

In order to compute the expansion coefficients, we had to construct all polygons on the
quasiperiodic graphs with up to 2n = 18 edges. Thus, we obtain the average number of such
self-avoiding polygons as a by-product of our calculation. Comparison with earlier results
on self-avoiding walks [50], based on enumerating walks that start from a chosen vertex in
the tiling, indicates that the self-avoiding polygons on the examples we considered belong to
the same universality class. In particular, this means that the corresponding critical point is
described by the same exponents as for the hexagonal lattice which are known analytically [57].
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Finally, we considered periodic approximants of the quasiperiodic tilings. For these, in
principle, it is possible to compute the free energy of the infinite periodic system analytically.
Here, we are only interested in the leading terms of the free energy, which we compare with
those of the infinite quasiperiodic tiling. We find that, at least for the leading orders inw, the
rational coefficients of the approximants converge rapidly towards the irrational coefficients
obtained for the quasiperiodic tiling. However, we also find that the series expansions for
periodic approximants, which can be performed to higher order, show strong fluctuations, as
can been seen in figure 8. Although there is some indication that these fluctuations might be
less dramatic for the quasiperiodic tiling, remnants of these fluctuations will certainly survive.

In conclusion, it is doubtful whether the computational effort necessary to extend the
expansions to higher order will result in a considerable improvement of the estimates of the
critical properties. Besides the technical difficulties arising from the huge number of graphs that
have to be taken into account, and the averaging with the occurrence frequencies of the graphs
in the infinite quasiperiodic tiling, it finally turns out that the hard-earned series coefficients do
not reward us for our labour: their behaviour is not as regular as for the square lattice, showing
strong fluctuations that make any extrapolation extremely difficult. For this reason, we neither
expect that one can learn much from the analogous procedure for the magnetic susceptibility,
because the computation of the corresponding high-temperature series, though possible by
similar means, is even more laborious because more general graphs contribute in this case.
Instead, it might be more rewarding to consider periodic approximants and use methods such
as those outlined in section 6 and [65] to compute physical quantities, such as for instance
the magnetization or correlation functions. At least, we can compute the exact values of the
critical temperatures for periodic approximants, and thus derive very precise estimates for the
critical temperature of the quasiperiodic cases, as we shall show in a forthcoming publication.
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